Copyright Cambridge University Press 2003	On-screen viewing permitted. Prin	nting not permitted.	http://www.cambridge.org/052	21642981
You can buy this book for 30 pounds or \$50.	See http://www.inference.phv.cam	m.ac.uk/mackav/itila	for links.	

Information Theory, Inference, and Learning Algorithms

David J.C. MacKay

Information Theory, Inference, and Learning Algorithms

David J.C. MacKay mackay@mrao.cam.ac.uk

©1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 ©Cambridge University Press 2003

Version 6.8 (second printing) March 14, 2004

Please send feedback on this book via http://www.inference.phy.cam.ac.uk/mackay/itila/

This book (version 6.0) was published by C.U.P. in September 2003. It will remain viewable on-screen on the above website, in postscript, djvu, and pdf formats.

In the second printing (version 6.6) minor typos were corrected, and the book design was slightly altered to modify the placement of section numbers.

(C.U.P. replace this page with their own page ii.)

Contents

v Introduction to Information Theory ı **Data Compression** Symbol Codes П **Noisy-Channel Coding** The Noisy-Channel Coding Theorem Error-Correcting Codes and Real Channels Ш Further Topics in Information Theory Hash Codes: Codes for Efficient Information Retrieval Binary Codes Further Exercises on Information Theory Communication over Constrained Noiseless Channels Crosswords and Codebreaking Why have Sex? Information Acquisition and Evolution IV An Example Inference Task: Clustering Exact Inference by Complete Enumeration Maximum Likelihood and Clustering Useful Probability Distributions Exact Marginalization in Trellises Exact Marginalization in Graphs Laplace's Method

	28	Model Comparison and Occam's Razor	345
	29	Monte Carlo Methods	359
	30	Efficient Monte Carlo Methods	389
	31	Ising Models	402
	32	Exact Monte Carlo Sampling	415
	33	Variational Methods	424
	34	Independent Component Analysis and Latent Variable Mod-	
		elling	439
	35	Random Inference Topics	447
	36	Decision Theory	453
	37	Bayesian Inference and Sampling Theory	459
V	No	ural networks	469
•			
	38	Introduction to Neural Networks	470
	39	The Single Neuron as a Classifier	473
	40	Capacity of a Single Neuron	485
	41	Learning as Inference	494
	42	Hopfield Networks	507
	43	Boltzmann Machines	524
	44	Supervised Learning in Multilayer Networks	529
	$\frac{45}{46}$		537
	40	Deconvolution	551
VI	Spa	arse Graph Codes	557
	47	Low-Density Parity-Check Codes	559
	48	Convolutional Codes and Turbo Codes	576
	49	Repeat–Accumulate Codes	584
	50	Digital Fountain Codes	591
	_		
VII	Apı	pendices	599
	A	Notation	600
	В	Some Physics	603
	С	Some Mathematics	607
	Bib	liography	615
	Ind	ex	622

Preface

This book is aimed at senior undergraduates and graduate students in Engineering, Science, Mathematics, and Computing. It expects familiarity with calculus, probability theory, and linear algebra as taught in a first- or second-year undergraduate course on mathematics for scientists and engineers.

Conventional courses on information theory cover not only the beautiful theoretical ideas of Shannon, but also practical solutions to communication problems. This book goes further, bringing in Bayesian data modelling, Monte Carlo methods, variational methods, clustering algorithms, and neural networks.

Why unify information theory and machine learning? Because they are two sides of the same coin. In the 1960s, a single field, cybernetics, was populated by information theorists, computer scientists, and neuroscientists, all studying common problems. Information theory and machine learning still belong together. Brains are the ultimate compression and communication systems. And the state-of-the-art algorithms for both data compression and error-correcting codes use the same tools as machine learning.

How to use this book

The essential dependencies between chapters are indicated in the figure on the next page. An arrow from one chapter to another indicates that the second chapter requires some of the first.

Within Parts I, II, IV, and V of this book, chapters on advanced or optional topics are towards the end. All chapters of Part III are optional on a first reading, except perhaps for Chapter 16 (Message Passing).

The same system sometimes applies within a chapter: the final sections often deal with advanced topics that can be skipped on a first reading. For example in two key chapters – Chapter 4 (The Source Coding Theorem) and Chapter 10 (The Noisy-Channel Coding Theorem) – the first-time reader should detour at section 4.5 and section 10.4 respectively.

Pages vii—x show a few ways to use this book. First, I give the roadmap for a course that I teach in Cambridge: 'Information theory, pattern recognition, and neural networks'. The book is also intended as a textbook for traditional courses in information theory. The second roadmap shows the chapters for an introductory information theory course and the third for a course aimed at an understanding of state-of-the-art error-correcting codes. The fourth roadmap shows how to use the text in a conventional course on machine learning.

vi Preface

