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Preface

This textbook is an enlarged and enhanced version of the authors’ lecture
notes used for a graduate course in fuzzy sets, fuzzy logic, fuzzy systems, and
fuzzy control theories. This course has been taught for seven years at the
University of Houston, with emphasis on fuzzy systems and fuzzy control,
regarding both basic mathematical theories and their potential engineering
applications.

The word “fuzzy” is perhaps no longer fuzzy to many engineers today.
Introduced in the earlier 1970s, fuzzy systems and fuzzy control theories as an
emerging technology targeting industrial applications have added a promising
new dimension to the existing domain of conventional control systems
engineering. It is now a common belief that when a complex physical system
does not provide a set of differential or difference equations as a precise or
reasonably accurate mathematical model, particularly when the system
description requires certain human experience in linguistic terms, fuzzy
systems and fuzzy control theories have some salient features and
distinguishing merits over many other approaches.

Fuzzy control methods and algorithms, including many specialized
software and hardware available on the market today, may be classified as one
type of intelligent control. This is because fuzzy systems modeling, analysis,
and control incorporate a certain amount of human knowledge into its
components (fuzzy sets, fuzzy logic, and fuzzy rule base). Using human
expertise in system modeling and controller design is not only advantageous
but often necessary. Classical controller design has already incorporated
human skills and knowledge: for instance, what type of controller to use and
how to determine the controller structure and parameters largely depend on
the decision and preference of the designer, especially when multiple choices
are possible. The relatively new fuzzy control technology provides one more
choice for this consideration; it has the intention to be an alternative, rather
than a simple replacement, of the existing control techniques such as classical
control and other intelligent control methods (e.g., neural networks, expert
systems, etc.). Together, they supply systems and control engineers with a
more complete toolbox to deal with the complex, dynamic, and uncertain real
world. Fuzzy control technology is one of the many tools in this toolbox that
is developed not only for elegant mathematical theories but, more importantly,
for many practical problems with various technical challenges.

Compared with conventional approaches, fuzzy control utilizes more
information from domain experts and relies less on mathematical modeling
about a physical system.

On the one hand, fuzzy control theory can be quite heuristic and somewhat
ad hoc. This sometimes is preferable or even desirable, particularly when low-
cost and easy operations are required where mathematical rigor is not the main
concern. There are many examples of this kind in industrial applications, for
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which fuzzy sets and fuzzy logic are easy to use. Within this context,
determining a fuzzy set or a fuzzy rule base seems to be somewhat subjective,
where human knowledge about the underlying physical system comes into
play. However, this may not be any more subjective than selecting a suitable
mathematical model in the deterministic control approach (“linear or
nonlinear?” “if linear, what’s the order or dimension and, yet, if nonlinear,
what kind of nonlinearity?” “what kind of optimality criterion to use?” “what
kind of norm for robustness measure?” etc.). It is also not much more
subjective than choosing a suitable distribution function in the stochastic
control approach (“Gaussian or non-Gaussian noise?” “white noise or just
unknown but bounded uncertainty?” and the like). Although some of these
questions can be answered on the basis of statistical analysis of available
empirical data in classical control systems, the same is true for establishing an
initial fuzzy rule base in fuzzy control systems.

On the other hand, fuzzy control theory can be rigorous and fuzzy
controllers can have precise and analytic structures with guaranteed closed-
loop system stability and some performance specifications, if such
characteristics are intended. In this direction, the ultimate objective of the
current fuzzy systems and fuzzy control research is appealing: the fuzzy
control system technology is moving toward a solid foundation as part of the
modern control theory. The trend of a rigorous approach to fuzzy control,
starting from the mid-1980s, has produced many exciting and promising
results. For instance, some analytic structures of fuzzy controllers, particularly
fuzzy PID controllers, and their relationship with corresponding conventional
controllers are much better understood today. Numerous analysis and design
methods have been developed, which have turned the earlier "art" of building
a working fuzzy controller to the "science" of systematic design. As a
consequence, the existing analytical control theory has made the fuzzy control
systems practice safer, more efficient, and more cost-effective.

This textbook represents a continuing effort in the pursuit of analytic
theory and rigorous design for fuzzy control systems. More specifically, the
basic notion of fuzzy mathematics (Zadeh fuzzy set theory, fuzzy membership
functions, interval and fuzzy number arithmetic operations) is first studied in
this text. Consequently, in a comparison with the classical two-valued logic,
the fundamental concept of fuzzy logic is introduced. The ultimate goal of
this course is to develop an elementary practical theory for automatic control
of uncertain or imperfectly modeled systems encountered in engineering
applications using fuzzy mathematics and fuzzy logic, thereby offering an
alternative approach to control systems design and analysis under irregular
conditions, for which conventional control systems theory may not be able to
manage or well perform. Therefore, this part of the text on fuzzy mathematics
and fuzzy logic is followed by the basic fuzzy systems theory (Mamdani and
Takagi-Sugeno modeling, along with parameter estimation and system
identification) and fuzzy control theory. Here, fuzzy control theory is
introduced, first based on the developed fuzzy system modeling, along with
the concepts of controllability, observability, and stability, and then based on
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the well-known classical Proportional-Integral-Derivative (PID) controllers
theory and design methods. In particular, fuzzy PID controllers are studied in
greater detail. These controllers have precise analytic structures, with rigorous
analysis and guaranteed closed-loop system stability; they are comparable,
and also compatible, with the classical PID controllers. To that end, fuzzy
adaptive and optimal control issues are also discussed, albeit only briefly,
followed by some potential industrial application examples.

The primary purpose of this course is to provide some rather systematic

training for systems and control majors, both senior undergraduate and first-
year graduate students, and to familiarize them with some fundamental
mathematical theory and design methodology in fuzzy control systems. We
have tried to make this book self-contained, so that no preliminary knowledge
of fuzzy mathematics and fuzzy control systems theory is needed to
understand the material presented in this textbook. Although we assume that
the students are aware of the classical set theory, two-valued logic, and
elementary classical control systems theory, the fundamentals of these
subjects are briefly reviewed throughout for their convenience.
Some familiar terminology in the field of fuzzy control systems has become
quite standard today. Therefore, as a textbook written in a classical style, we
have taken the liberty to omit some personal and specialized names such as
“TS fuzzy model” and “t-norm.” One reason is that too many names have to
be given to too many items in doing so. Nevertheless, closely related
references are given at the end of each chapter for crediting and for the
reader’s further reading. Also, we have indicated by * in the Table of Contents
those relatively advanced materials that are beyond the basic scope of the
present text; they are used for reader's further studies of the subject.

It is our hope that students will benefit from this textbook in obtaining
some relatively comprehensive knowledge about fuzzy control systems theory
which, together with their mathematical foundations, can in a way better
prepare them for the rapidly developing applied control technologies in
modern industry.

The Authors






Table of Contents

1. FUZZY SEt TNEOIY ..ccuiiiiiiiiieiee e 1
I. Classical SEt TheOIY ........ccoviiiireiie e 1
A. Fundamental CONCEPLS.......coevrireiriririieee s 1

B. Elementary Measure Theory of Sets........cccccceviveviviveieeninennn. 3

1. FUZZY SEt TREOIY ..o 5
1. Interval Arithmetic ... 9
A. Fundamental CONCEPLS......cccvevvrierierieie e 9

B. Interval ArithmetiC.........occovviriiiiicce e 12

C. Algebraic Properties of Interval Arithmetic.............ccccvene.ee. 13

D. Measure Theory of INtervals..........coccoevniinineiicneiicieee 17

E. Properties of the Width of an Interval..............cccooeiiinenen. 20

F. Interval EValuation..........ccocooeiiiiiieieieee e 22

G. Interval Matrix Operations..........ccoceoveereieneneieneneiese e 25

H. Interval Matrix Equations and Interval Matrix Inversion ...... 30

IV. Operations 0N FUZZY SEtS.........cooeiiiireneeieieeee e 37
A, FUZZY SUBSELS ....oviiiieceeecee e 37

B. Fuzzy Numbers and Their Arithmetic............ccocvvvrvvivivennnne. 42
PrOBIEMS ... 54
RETEIENCES ...t 56
2. FUZZY LOGIC TNEOIY ..cvveeeieeie ettt ettt 57
I. Classical LOgiC Theory ..o 58
A. Fundamental CoNCEPLS.......coceiiririiiiee e 58

B. Logical Functions of the Two-Valued LogiC...........c.cceennee. 61

I1. The Boolean Algebra..........cccooviiiiiiiiii e 62
A. Basic Operations of the Boolean Algebra..........cccccooeienenn. 62

B. Basic Properties of the Boolean Algebra..........cccccoeeeienenne. 63

H1. MUlti-Valued LOGIC.....cveveieieririnie e 65
A. Three-Valued LOQIC......c.covererenrie e 65

B. N-Valued LOGIC .......oovviiiiciiiieereeee e 65

IV. Fuzzy Logic and Approximate Reasoning ..........cccccevververereenennns 66
V. FUZZY REIGLIONS ...t 69
V1. Fuzzy LOGQIiC RUIE BASE........ccooerieiirieieinieee e 75
A. Fuzzy IF-THEN RUIES ....ovee e, 75

B. Fuzzy LogiC RUIE BaSE .......cceceeiriireree e 77

C. Interpretation of Fuzzy IF-THEN Rules..........ccccccvevveieennne, 80



D. Evaluation of Fuzzy IF-THEN Rules..........ccccooeiiiniiicinine

0] 0] [T . SRS
RETEIENCES ...
3. Fuzzy System MOdeling.........cccoevveiiiiiiiiieieece e
I. Modeling of Static Fuzzy Systems..........ccccevvvievieiieiise e,
A. Fuzzy Logic Description of Input-Output Relations..............
B. Parameters Identification in Static Fuzzy Modeling..............
1. Discrete-Time Dynamic Fuzzy Systems and Their Stability
ANAIYSIS .ot
A. Dynamic Fuzzy Systems without Control..............ccccccvrenne.
B. Dynamic Fuzzy Systems with Control............cc.cccooeneiinennn.
I11. Modeling of Continuous-Time Dynamic Fuzzy Control
SYSTEIMS e
A. Fuzzy Interval Partitioning .........ccccooevieneinensinencesee
B. Dynamic Fuzzy System Modeling...........cccoeoniniincnnnnnn.
V. Stability Analysis of Continuous-Time Dynamic Fuzzy
SYSEBIMS L.ttt
V. Controllability Analysis of Continuous-Time Dynamic
FUZZY SYSIEMS ...ttt e s
VI. Analysis of Nonlinear Continuous-Time Dynamic Fuzzy
Y (=] TR
PrODIBMS ... e
RETEIBINCES ...t e
4. Fuzzy COontrol SYStEMS.....cc.oiiiiiieiiieieiieie et
I. Classical Programmable Logic Control...........cccccoeviiiiinciennnne
1. Fuzzy Logic Control (1): A General Model-Free Approach........
A. A Closed-Loop Set-Point Tracking System.........cc.coovvvrennn
B. Design Principle of Fuzzy Logic Controllers...........c.cccvueneen.
C. Examples of Model-Free Fuzzy Controller Design ...............
I1l. Fuzzy Logic Control (I1): A General Model-Based Approach....
0] 0] LT .S
RETEIEINCES ...t
5. Fuzzy PID CONtrOlIErsS........cccveiiieiee e

I. Conventional PID Controllers: Design..........ccccovvvevivevivesesinennn,



6.

7.

1. Fuzzy PID Controllers DeSIgN .......ccoevvirieininieiseniese e, 192

A. Fuzzy PD Controller ..ot 193
B. Fuzzy Pl CONtroller.......cooooiviiiiiiicnese e 207
C. Fuzzy PI4+D Controller.......c.cccvvveiieiieie e 209
I1l. Fuzzy PID Controllers: Stability Analysis .........cccccccevivviivennnne. 223
A. BIBO Stability and the Small Gain Theorem ...........c.ccoc..... 223
B. BIBO Stability of Fuzzy PD Control Systems....................... 226
C. BIBO Stability of Fuzzy PI Control Systems ..........ccccceeuee.ee. 229
D. BIBO Stability of Fuzzy PI+D Control Systems ................... 231

E. Graphical Stability Analysis of Fuzzy PID Control
SYSTEIMS ..t 232
PrODIEMS ... e 236
RETEIEINCES ... et 237
Adaptive FUzzy CONrol ..........cccoeiiiiiiee e 239
I. Fundamental Adaptive Fuzzy Control Concept ..........ccoceevruennnne. 240
A. Operational CONCEPLS......ccvvvriveieieriere e se st 240
B. System Parameterization..........cc.ccevvvverevineniesnsieseeree e 242
C. Adjusting Mechanism .........ccccevuevvererinienie s 243
D. Guidelines for Selecting an Adaptive Fuzzy Controller ........ 245
1. Gain SChedUlING ..o 246
1. Fuzzy Self-Tuning Regulator ..........cccoevvvevenese s 252
IV. Model Reference Adaptive Fuzzy Systems..........ccccooevereniennne 255
V. DUl CONLIOL ..ot 257
VI. Sub-Optimal Fuzzy Control ..........cccceviiiiiiiniieeeeee e 258
A. SISO Control SYSIEMS .....c.eiuieiiiiie e 259
B. MIMO Control SYStEMS........ccoveiiiiiiirine e 260
0] 0] LT . S 266
RETEIENCES ....viiecei e 269
Some Applications of Fuzzy Control ... 271
I. Health Monitoring Fuzzy Diagnostic Systems..........ccccocevcvrennnne 271
A. Fuzzy Rule-Based Health Monitoring Expert Systems.......... 272
B. Computer SIMUlations ..........cccoerrieiiniineeeee e 276
C. NUmerical RESUILS.........coooiiiiiiiice e 277
1. Fuzzy Control of Image Sharpness for Autofocus Cameras........ 281
A. Basic Image Processing TechniquUeS..........cccceeeviververnsnennn, 282
B. Fuzzy Control Model..........cccoovveviiiiei e, 283

C. Computer Simulation ReSUItS ..........ccccevvvevvecviiciere e, 286



I1l. Fuzzy Control for Servo Mechanic Systems ...........cccccveviennne, 291

A. Fuzzy Modeling of a Servo Mechanic System .................... 292
B. Fuzzy Controller of a Servo Mechanic System.............c.e..... 294
C. Computer Simulations and Numerical Results .................... 295
IV. Fuzzy PID Controllers for Servo Mechanic Systems.................. 300
A. Fuzzy PID Controller of a Servo Mechanic System .............. 300
B. Adaptive Fuzzy Controller of a Servo Mechanic System...... 301
V. Fuzzy Controller for Robotic Manipulator.............cccccccvevviinennen. 302
A. Fuzzy Modeling of a 2-Link Planar Manipulator................... 304
B. Fuzzy Controller of a 2-Link Planar Manipulator.................. 307
C. Numerical SIMUlations...........cooeveiniinieie e 307
PrODIEMS ... 311
RETEIEINCES ... i 313



CHAPTER 1

Fuzzy Set Theory

The classical set theory is built on the fundamental concept of “set” of
which an individual is either a member or not a member. A sharp, crisp, and
unambiguous distinction exists between a member and a nonmember for any
well-defined “set” of entities in this theory, and there is a very precise and
clear boundary to indicate if an entity belongs to the set. In other words, when
one asks the question “Is this entity a member of that set?” The answer is
either “yes” or “no.” This is true for both the deterministic and the stochastic
cases. In probability and statistics, one may ask a question like “What is the
probability of this entity being a member of that set?” In this case, although
an answer could be like “The probability for this entity to be a member of that
set is 90%,” the final outcome (i.e., conclusion) is still either “it is” or “it is
not” a member of the set. The chance for one to make a correct prediction as
“it is a member of the set” is 90%, which does not mean that it has 90%
membership in the set and in the meantime it possesses 10% non-membership.
Namely, in the classical set theory, it is not allowed that an element is in a set
and not in the set at the same time. Thus, many real-world application
problems cannot be described and handled by the classical set theory,
including all those involving elements with only partial membership of a set.
On the contrary, fuzzy set theory accepts partial memberships, and, therefore,
in a sense generalizes the classical set theory to some extent.

In order to introduce the concept of fuzzy sets, we first review the
elementary set theory of classical mathematics. It will be seen that the fuzzy
set theory is a very natural extension of the classical set theory, and is also a
rigorous mathematical notion.

I. CLASSICAL SET THEORY

A. Fundamental Concepts
Let S be a nonempty set, called the universe set below, consisting of all the

possible elements of concern in a particular context. Each of these elements is
called a member, or an element, of S. A union of several (finite or infinite)
members of S is called a subset of S. To indicate that a member s of S
belongs to a subset S of S, we write

se S.
If s is not a member of S, we write

s¢ S.
To indicate that S is a subset of S, we write

ScS.
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Usually, this notation implies that S is a strictly proper subset of S in the sense
that there is at least one member x e S butx ¢ S. If it can be either Sc S or S
=S, we write

ScS.
An empty subset is denoted by &. A subset of certain members that have
properties P4, ..., P, will be denoted by a capital letter, say A, as

A ={ a|a has properties Py, ..., P, }.

An important and frequently used universe set is the n-dimensional

Euclidean space R". A subset A < R" that is said to be convex if

X1 Y1
x=|:|eA and y=|:|eA
Xn Yn
implies
AX+(A-ANye A forany A € [0,1].

Let A and B be two subsets. If every member of A is also a member of B,
i.e., ifae Aimplies a € B, then A is said to be a subset of B. We write A  B.
If both A — B and B — A are true, then they are equal, for which we write A =
B. If it can be either A — B or A = B, then we write A ¢ B. Therefore, Ac B
is equivalent to both A B and A # B.

The difference of two subsets A and B is defined by

A-B={c|ce Aandcg B}.

In particular, if A = S is the universe set, then S — B is called the

complement of B, and is denoted by B, i.e.,
B =S-B.
Obviously,

B =B, S =0, and @ =S
Let r € R be a real number and A be a subset of R. Then the multiplication of
rand A is defined to be
rA={ralaeA}
The union of two subsets A and B is defined by
AuB=BuUA={c|ceAorce B}
Thus, we always have
AuS=S, AU =A, and Au A =S.
The intersection of two subsets A and B is defined by
AnB=BnA={c|ce Aandce B}.
Obviously,
AnS=A, AN@=0, and AN A=Q.
Two subsets A and B are said to be disjoint if
ANB=0.
Basic properties of the classical set theory are summarized in Table 1.1, where
AcSandBcS.
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Table 1.1 Properties of Classical Set Operations

Involutive law A=A
Commutative law AuUB=BUA
ANnB=BnA
Associative law (AuB)uC=Au(BuUC)
(AnB)NnC=ANn(BNC)
Distributive law An(BuC)=(AnB)U(ANnC)
Au(BnC)=(AuB)n(AuC)
AUA=A
ANnA=A

AU(ANnB)=A
An(AuB)=A
AU(ANB)=AUB
An(AUB)=ANB
AuS=S
AND=9
Aud=A
ANnS=A
AN A=0
AUA=S
DeMorgan’s law AB=AUB

AB=ANB

In order to simplify the notation throughout the rest of the book, if the
universe set S has been specified or is not of concern, we simply call any of its
subsets a set. Thus, we can consider two sets A and B in S, and if A < B then
Ais called a subset of B.

For any set A, the characteristic function of A is defined by

Xu(X) = 1 ifxeA,
AT 0 ifxeA

It is easy to verify that for any two sets A and B in the universe set S and for
any element x € S, we have

XAUB(X) = maX{ XA(X)1 XB(X) }v

Xans(X) = min{ Xa(x), Xa(X) },

XK (X) =1- XA(X).

B’.Elementary Measure Theory of Sets

In this subsection, we briefly review the basic notion of measure in the
classical set theory which, although may not be needed throughout this book,
will be useful in further studies of some advanced fuzzy mathematics.
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Let S be the universe set and A a nonempty family of subsets of S. Let,
moreover,
L A — [0,0]
be a nonnegative real-valued function defined on (subsets of) A, which may
assume the value eo.
A set B in A, denoted as an element of A by B € A, is called a null set with
respect to p if w(B) = 0, where
nB)={ub)be B}
W is said to be additive if

u(_LiJl Ai):Q1 u(A)

for any finite collection {A,,...,A.} of sets in A satisfying both Ui”:lAi € Aand

AN A =3, i#] 1,j=1,..,n. pissaid to be countably additive if n =  in the
above. Moreover, W is said to be subtractive if
AecA, BeA, A cC B, B-AcA, and u(B) <
together imply
(B - A) = w(B) - uA).
It can be verified, however, that if u is additive then it is also subtractive.
Now, w is called a measure on A if it is countably additive and there is a
nonempty set C € A such that p(C) < .
For example, if we define a function p by pu(A) = 0 for all A € A, then pis
a measure on A, which is called the trivial measure. As the second example,
suppose that A contains at least one finite set and define pu by u(A) = the
number of elements belonging to A. Then p is a measure on A, which is
called the natural measure.
A measure p on A has the following two simple properties: (i) W(&) = 0,
and (ii) w is finitely additive.
Let 1 be a measure on A. Then a set A € A is said to have a finite measure
if LW(A) < =, and have a o-finite measure if there is a sequence {Aj} of sets in
A such that

Ac A  and  pA) < foralli=12, .
i=1

w is finite (resp., o-finite) on A if every set in A has a finite (resp., o-finite)
measure.
A measure pon A is said to be complete if

Be A, AcB, and uB)=0
together imply p(A) = 0. p is said to be monotone if

Ae A, Be A, and AcB
together imply

H(A) < u(B).

w is said to be subadditive if

WA) < (A7) + (A2)
forany A, A;, A, e Awith A=A; U A, wis said to be finitely subadditive if



1 e Fuzzy Set Theory 5

u(A) < %u(m

for any finite collection {AA;,...,A.} of subsets in A satisfying A = Ui”zlAi ,
and p is said to be countably subadditive if n = = in the above.
It can be shown that if u is countably subadditive and p(J) = 0, then it is
also finitely subadditive.
Let Ae A. A measure pon A is said to be continuous from below at A if
{Aj} c A, AlcA,c.., and limA=A
I—00
together imply
1im u(A) = u(A),

and p is said to be continuous from above at A if
{Aj} c A, AlDAD ..., W(AL) < oo, and limA;=A
I—0c0
together imply
1im p(A) = p(A)-

w is continuous from below (resp., above) on A if and only if it is continuous
from below (resp., above) at every set A € A, and p is said to be continuous if
it is continuous both from below and from above (at A, or on A).
Let A; and A, be families of subsets of A such that A; ¢ A,, and let p; and
L be measures on A; and A,, respectively. L, is said to be an extension of p;
if w(A) = Lp(A) for every A e Ay
For example, let A = (—oo,00), Ay = {[ab) | -~ <a<b<eo} A, =
family of all finite, disjoint unions of bounded intervals of the form [c,d), and
a measure L be defined on A; by
w(fab)) =b-a.
Then p is countably additive and so is a finite measure on A;. This , can be
extended to a finite measure i, on A, by defining
t([a,b)) =wi([ab))  forall[ab)e A
More generally, if f is a finite, nondecreasing, and left-continuous real-valued
function of a real variable, then
U ([a,b)) :=f(b) — f(a) forall [a,b) € Ay,
defines a finite measure on A4, and it can be extended to be a finite measure p,
on A,.

II. FUZZY SET THEORY

In Section I.A, we have defined the characteristic function X, of a set A by
Xa(¥) = 1 if xeA,
AT 0 ifxeA,

which is an indicator of members and nonmembers of the crisp set A. In the
case that an element has only partial membership of the set, we need to
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generalize this characteristic function to describe the membership grade of this
element in the set: larger values denote higher degrees of the membership.

To give more motivation for this concept of partial membership, let us
consider the following examples.

Example 1.1. Let S be the set of all human beings, used as the universe
set, and let

Si={se S|sisold}.
Then S is a “fuzzy subset” of S because the property “old” is not well defined
and cannot be precisely measured: given a person who is 40 year old, it is not
clear if this person belongs to the set S;. Thus, to make the subset S; well-
defined, we have to quantify the concept “old,” so as to characterize the subset
St in a precise and rigorous way.

For the time being, let us say, we would like to describe the concept “old”
by the curve shown in Figure 1.1(a) using common sense, where the only
people who are considered to be “absolutely old” are those 120 years old or
older, and the only people who are considered to be “absolutely young” are
those newborns. Meanwhile, all the other people are old as well as young,
depending on their actual ages. For example, a person 40 years old is
considered to be “old” with “degree 0.5” and at the same time also “young”
with “degree 0.5” according to the measuring curve that we used. We cannot
exclude this person from the set S; described above, nor include him
completely. Thus, the curve that we introduce in Figure 1.1(a) establishes a
mathematical measure for the “oldness” of a human being, and hence can be
used to define the partial membership of any person relative to the subset Sy
described above. The curve shown in Figure 1.1(a), which is indeed a
generalization of the classical characteristic function Xs, (it can be used to
conclude a person who either “is” or “is not” a member of the subset S), is
called a membership function associated with the subset Sy.

Of course, one may also use the piecewise linear membership function
shown in Figure 1.1(b) to describe the same concept of oldness for the same
subset Sg, depending on whichever is more meaningful and more convenient
in one’s concern, where both are reasonable and acceptable in common sense.
The reader may suggest many more good candidates for such a membership
function for the subset S; described above. There is yet no fixed, unique, and
universal rule or criterion for selecting a membership function for a particular
“fuzzy subset” in general: a correct and good membership function is
determined by the user based on his scientific knowledge, working
experience, and actual need for the particular application in question. This
selection is more or less subjective, but the situation is just like in the classical
probability theory and statistics where if one says “we assume that the noise is
Gaussian and white,” what he uses to start with all the rigorous mathematics is
a subjective hypothesis that may not be very true, simply because the noise in
question may not be exactly Gaussian and may not be perfectly white. Using
the same approach, we can say, “we assume that the membership function that
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Figure 1.1(a) An example of Figure 1.1(b) Another example
membership functions. of membership functions.

describes the oldness is the one given in Figure 1.1(a),” to start with all the
rigorous mathematics in the rest of the investigation.

The fuzzy set theory is taking the same logical approach as what people
have been doing with the classical set theory: in the classical set theory, as
soon as the two-valued characteristic function has been defined and adopted,
rigorous mathematics follows; in the fuzzy set case, as soon as a multi-valued
characteristic function (the membership function) has been chosen and fixed, a
rigorous mathematical theory can be fully developed.

Now, we return to the subset S; introduced above. Suppose that the
membership function associated with it, say the one shown in Figure 1.1(a),
has been chosen and fixed. Then, this subset S; along with the membership
function used, which we will denote by us(s) with s € S, is called a fuzzy
subset of the universe set S. A fuzzy subset thus consists of two components:
a subset and a membership function associated with it. This is different from
the classical set theory, where all sets and subsets share the same (and the
unique) membership function: the two-valued characteristic function
mentioned above.

Throughout this book, if no confusion would arise, we will simply call a
fuzzy subset a fuzzy set, keeping in mind that it has to be a subset of some
universe set and has to have a pre-described membership function associated
with it.

To familiarize this new concept, let us now discuss one more example.

Example 1.2. Let S be the (universe) set of all real numbers, and let

Si={se S|sis positive and large }.
This subset, S;, is not well-defined in the classical set theory because, although
the statement “s is positive” is precise, the statement “s is large” is vague.
However, if we introduce a membership function that is reasonable and
meaningful for a particular application for the characterization or measure of
the property “large,” say the one shown in Figure 1.2 quantified by the
function

L if s<0,
Hs () 1-e™ ifs>0,

then the fuzzy subset S;, associated with this membership function ps(s), is
well defined.
Similarly, a membership function for the subset



