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Preface

This textbook is an enlarged and enhanced version of the authors’ lecture
notes used for a graduate course in fuzzy sets, fuzzy logic, fuzzy systems, and 
fuzzy control theories. This course has been taught for seven years at the
University of Houston, with emphasis on fuzzy systems and fuzzy control,
regarding both basic mathematical theories and their potential engineering
applications.

The word “fuzzy” is perhaps no longer fuzzy to many engineers today.
Introduced in the earlier 1970s, fuzzy systems and fuzzy control theories as an 
emerging technology targeting industrial applications have added a promising
new dimension to the existing domain of conventional control systems
engineering. It is now a common belief that when a complex physical system
does not provide a set of differential or difference equations as a precise or
reasonably accurate mathematical model, particularly when the system
description requires certain human experience in linguistic terms, fuzzy
systems and fuzzy control theories have some salient features and
distinguishing merits over many other approaches. 

Fuzzy control methods and algorithms, including many specialized
software and hardware available on the market today, may be classified as one 
type of intelligent control. This is because fuzzy systems modeling, analysis,
and control incorporate a certain amount of human knowledge into its
components (fuzzy sets, fuzzy logic, and fuzzy rule base). Using human
expertise in system modeling and controller design is not only advantageous
but often necessary. Classical controller design has already incorporated
human skills and knowledge: for instance, what type of controller to use and
how to determine the controller structure and parameters largely depend on
the decision and preference of the designer, especially when multiple choices
are possible. The relatively new fuzzy control technology provides one more
choice for this consideration; it has the intention to be an alternative, rather
than a simple replacement, of the existing control techniques such as classical 
control and other intelligent control methods (e.g., neural networks, expert
systems, etc.). Together, they supply systems and control engineers with a
more complete toolbox to deal with the complex, dynamic, and uncertain real
world. Fuzzy control technology is one of the many tools in this toolbox that
is developed not only for elegant mathematical theories but, more importantly, 
for many practical problems with various technical challenges.

Compared with conventional approaches, fuzzy control utilizes more
information from domain experts and relies less on mathematical modeling
about a physical system. 

On the one hand, fuzzy control theory can be quite heuristic and somewhat 
ad hoc. This sometimes is preferable or even desirable, particularly when low-
cost and easy operations are required where mathematical rigor is not the main 
concern. There are many examples of this kind in industrial applications, for
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which fuzzy sets and fuzzy logic are easy to use. Within this context,
determining a fuzzy set or a fuzzy rule base seems to be somewhat subjective, 
where human knowledge about the underlying physical system comes into
play. However, this may not be any more subjective than selecting a suitable
mathematical model in the deterministic control approach (“linear or
nonlinear?” “if linear, what’s the order or dimension and, yet, if nonlinear,
what kind of nonlinearity?” “what kind of optimality criterion to use?” “what
kind of norm for robustness measure?” etc.). It is also not much more
subjective than choosing a suitable distribution function in the stochastic
control approach (“Gaussian or non-Gaussian noise?” “white noise or just
unknown but bounded uncertainty?” and the like). Although some of these
questions can be answered on the basis of statistical analysis of available
empirical data in classical control systems, the same is true for establishing an 
initial fuzzy rule base in fuzzy control systems.

On the other hand, fuzzy control theory can be rigorous and fuzzy
controllers can have precise and analytic structures with guaranteed closed-
loop system stability and some performance specifications, if such
characteristics are intended. In this direction, the ultimate objective of the
current fuzzy systems and fuzzy control research is appealing: the fuzzy
control system technology is moving toward a solid foundation as part of the
modern control theory. The trend of a rigorous approach to fuzzy control,
starting from the mid-1980s, has produced many exciting and promising
results. For instance, some analytic structures of fuzzy controllers, particularly 
fuzzy PID controllers, and their relationship with corresponding conventional
controllers are much better understood today. Numerous analysis and design
methods have been developed, which have turned the earlier "art" of building
a working fuzzy controller to the "science" of systematic design. As a
consequence, the existing analytical control theory has made the fuzzy control 
systems practice safer, more efficient, and more cost-effective.

This textbook represents a continuing effort in the pursuit of analytic
theory and rigorous design for fuzzy control systems. More specifically, the
basic notion of fuzzy mathematics (Zadeh fuzzy set theory, fuzzy membership 
functions, interval and fuzzy number arithmetic operations) is first studied in
this text. Consequently, in a comparison with the classical two-valued logic,
the fundamental concept of fuzzy logic is introduced.  The ultimate goal of
this course is to develop an elementary practical theory for automatic control
of uncertain or imperfectly modeled systems encountered in engineering
applications using fuzzy mathematics and fuzzy logic, thereby offering an
alternative approach to control systems design and analysis under irregular
conditions, for which conventional control systems theory may not be able to
manage or well perform. Therefore, this part of the text on fuzzy mathematics 
and fuzzy logic is followed by the basic fuzzy systems theory (Mamdani and
Takagi-Sugeno modeling, along with parameter estimation and system
identification) and fuzzy control theory. Here, fuzzy control theory is
introduced, first based on the developed fuzzy system modeling, along with
the concepts of controllability, observability, and stability, and then based on
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the well-known classical Proportional-Integral-Derivative (PID) controllers
theory and design methods. In particular, fuzzy PID controllers are studied in
greater detail. These controllers have precise analytic structures, with rigorous
analysis and guaranteed closed-loop system stability; they are comparable,
and also compatible, with the classical PID controllers. To that end, fuzzy
adaptive and optimal control issues are also discussed, albeit only briefly,
followed by some potential industrial application examples.

The primary purpose of this course is to provide some rather systematic
training for systems and control majors, both senior undergraduate and first-
year graduate students, and to familiarize them with some fundamental
mathematical theory and design methodology in fuzzy control systems.  We
have tried to make this book self-contained, so that no preliminary knowledge 
of fuzzy mathematics and fuzzy control systems theory is needed to
understand the material presented in this textbook.  Although we assume that
the students are aware of the classical set theory, two-valued logic, and
elementary classical control systems theory, the fundamentals of these
subjects are briefly reviewed throughout for their convenience.
Some familiar terminology in the field of fuzzy control systems has become
quite standard today. Therefore, as a textbook written in a classical style, we
have taken the liberty to omit some personal and specialized names such as
“TS fuzzy model” and “t-norm.” One reason is that too many names have to
be given to too many items in doing so. Nevertheless, closely related
references are given at the end of each chapter for crediting and for the
reader’s further reading. Also, we have indicated by * in the Table of Contents
those relatively advanced materials that are beyond the basic scope of the
present text; they are used for reader's further studies of the subject.

It is our hope that students will benefit from this textbook in obtaining
some relatively comprehensive knowledge about fuzzy control systems theory
which, together with their mathematical foundations, can in a way better
prepare them for the rapidly developing applied control technologies in
modern industry.

The Authors
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CHAPTER 1

Fuzzy Set Theory

The classical set theory is built on the fundamental concept of  “set” of
which an individual is either a member or not a member.  A sharp, crisp, and
unambiguous distinction exists between a member and a nonmember for any
well-defined “set” of entities in this theory, and there is a very precise and
clear boundary to indicate if an entity belongs to the set.  In other words, when 
one asks the question “Is this entity a member of that set?”  The answer is
either “yes” or “no.”  This is true for both the deterministic and the stochastic 
cases.  In probability and statistics, one may ask a question like “What is the
probability of this entity being a member of that set?”  In this case, although
an answer could be like “The probability for this entity to be a member of that 
set is 90%,” the final outcome (i.e., conclusion) is still either “it is” or “it is
not” a member of the set.  The chance for one to make a correct prediction as 
“it is a member of the set” is 90%, which does not mean that it has 90%
membership in the set and in the meantime it possesses 10% non-membership.
Namely, in the classical set theory, it is not allowed that an element is in a set 
and not in the set at the same time.  Thus, many real-world application
problems cannot be described and handled by the classical set theory,
including all those involving elements with only partial membership of a set.
On the contrary, fuzzy set theory accepts partial memberships, and, therefore,
in a sense generalizes the classical set theory to some extent.

In order to introduce the concept of fuzzy sets, we first review the
elementary set theory of classical mathematics.  It will be seen that the fuzzy
set theory is a very natural extension of the classical set theory, and is also a
rigorous mathematical notion.

I. CLASSICAL SET THEORY

A. Fundamental Concepts
Let S be a nonempty set, called the universe set below, consisting of all the 

possible elements of concern in a particular context.  Each of these elements is 
called a member, or an element, of S.  A union of several (finite or infinite)
members of S is called a subset of S.  To indicate that a member s of S
belongs to a subset S of S, we write

s ∈ S.
If s is not a member of S, we write

s ∉ S.
To indicate that S is a subset of S, we write

S ⊂ S.
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Usually, this notation implies that S is a strictly proper subset of S in the sense 
that there is at least one member x ∈ S but x ∉ S.  If it can be either S ⊂ S or S
= S, we write

S ⊆ S.
An empty subset is denoted by ∅.  A subset of certain members that have
properties P1, ... , Pn will be denoted by a capital letter, say A, as

A = { a | a has properties P1, ..., Pn }.
An important and frequently used universe set is the n-dimensional

Euclidean space Rn.  A subset A ⊆ Rn that is said to be convex if

x = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

nx

x
M

1

∈ A and y = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ny

y
M

1

∈ A

implies
λx + (1 − λ)y ∈ A for any λ ∈ [0,1].

Let A and B be two subsets.  If every member of A is also a member of B,
i.e., if a ∈ A implies a ∈ B, then A is said to be a subset of B.  We write A ⊂ B.
If both A ⊂ B and B ⊂ A are true, then they are equal, for which we write A = 
B.  If it can be either A ⊂ B or A = B, then we write A ⊆ B.  Therefore, A ⊂ B
is equivalent to both A ⊆ B and A ≠ B.

The difference of two subsets A and B is defined by
A − B = { c | c ∈ A and c ∉ B }.

In particular, if A = S is the universe set, then S − B is called the
complement of B, and is denoted by B , i.e.,

B  = S − B.
Obviously,

B  = B, S  = ∅, and ∅  = S.
Let r ∈ R be a real number and A be a subset of R.  Then the multiplication of 
r and A is defined to be

r A = { r a | a ∈ A }.
The union of two subsets A and B is defined by

A ∪ B = B ∪ A = { c | c ∈ A or c ∈ B }.
Thus, we always have

A ∪ S = S, A ∪ ∅ = A, and A ∪ A  = S.
The intersection of two subsets A and B is defined by

A ∩ B = B ∩ A = { c | c ∈ A and c ∈ B }. 
Obviously,

A ∩ S = A, A ∩ ∅ = ∅, and A ∩ A  = ∅.
Two subsets A and B are said to be disjoint if

A ∩ B = ∅.
Basic properties of the classical set theory are summarized in Table 1.1, where 
A ⊆ S and B ⊆ S.
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In order to simplify the notation throughout the rest of the book, if the
universe set S has been specified or is not of concern, we simply call any of its
subsets a set.  Thus, we can consider two sets A and B in S, and if A ⊂ B then 
A is called a subset of B.

For any set A, the characteristic function of A is defined by

XA(x) = 
⎩
⎨
⎧

∉
∈

.Ax
,Ax

if0

if1

It is easy to verify that for any two sets A and B in the universe set S and for
any element x ∈ S, we have

XA∪B(x) = max{ XA(x), XB(x) },
XA∩B(x) = min{ XA(x), XB(x) },

AX (x) = 1 − XA(x).

B*.Elementary Measure Theory of Sets
In this subsection, we briefly review the basic notion of measure in the

classical set theory which, although may not be needed throughout this book,
will be useful in further studies of some advanced fuzzy mathematics.

Table 1.1  Properties of Classical Set Operations

Involutive law A  = A
Commutative law A ∪ B = B ∪ A

A ∩ B = B ∩ A
Associative law ( A ∪ B ) ∪ C = A ∪ ( B ∪ C )

( A ∩ B ) ∩ C = A ∩ ( B ∩ C )
Distributive law A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C )

A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C )
A ∪ A = A
A ∩ A = A

A ∪ ( A ∩ B ) = A
A ∩ ( A ∪ B ) = A

A ∪ ( A ∩ B ) = A ∪ B
A ∩ ( A ∪ B ) = A ∩ B

A ∪ S = S
A ∩ ∅ = ∅
A ∪ ∅ = A
A ∩ S = A

A ∩ A  = ∅
A ∪ A  = S

DeMorgan’s law BA∩  = A ∪ B

BA∪  = A ∩ B
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Let S be the universe set and A a nonempty family of subsets of S.  Let,
moreover,

µ: A → [0,∞]
be a nonnegative real-valued function defined on (subsets of) A, which may
assume the value ∞.

A set B in A, denoted as an element of A by B ∈ A, is called a null set with 
respect to µ if µ(B) = 0, where 

µ(B) = { µ(b) | b ∈ B }.
µ is said to be additive if

µ( U
n

i 1=
Ai ) = U

n

i 1=
µ(Ai)

for any finite collection {A1,...,An} of sets in A satisfying both U
n
i iA1= ∈ A and 

Ai ∩ Aj = ∅, i ≠ j, i,j=1,...,n. µ is said to be countably additive if n = ∞ in the 
above.  Moreover, µ is said to be subtractive if

A ∈A, B ∈A, A ⊆ B, B − A ∈A, and µ(B) < ∞
together imply

µ(B − A) = µ(B) − µ(A).
It can be verified, however, that if µ is additive then it is also subtractive.

Now, µ is called a measure on A if it is countably additive and there is a
nonempty set C ∈A such that µ(C) < ∞.

For example, if we define a function µ by µ(A) = 0 for all A ∈A, then µ is 
a measure on A, which is called the trivial measure.  As the second example,
suppose that A contains at least one finite set and define µ by µ(A) = the
number of elements belonging to A.  Then µ is a measure on A, which is
called the natural measure.

A measure µ on A has the following two simple properties: (i) µ(∅) = 0,
and (ii) µ is finitely additive.

Let µ be a measure on A.  Then a set A ∈ A is said to have a finite measure
if µ(A) < ∞, and have a σ-finite measure if there is a sequence {Ai} of sets in
A such that

A ⊆ U
∞

=1i
iA and µ(Ai) < ∞ for all i = 1,2,….

µ is finite (resp., σ-finite) on A if every set in A has a finite (resp., σ-finite)
measure.

A measure µ on A is said to be complete if
B ∈ A , A ⊆ B , and µ(B) = 0

together imply µ(A) = 0. µ is said to be monotone if
A ∈ A , B ∈ A , and A ⊆ B

together imply
µ(A) ≤ µ(B).

µ is said to be subadditive if
µ(A) ≤ µ(A1) + µ(A2)

for any A, A1, A2 ∈ A with A = A1 ∪ A2. µ is said to be finitely subadditive if
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µ(A) ≤ ∑
=
µ

n

i
i )A

1
(

for any finite collection {A,A1,...,An} of subsets in A satisfying A = U
n
i iA1= ,

and µ is said to be countably subadditive if n = ∞ in the above.
It can be shown that if µ is countably subadditive and µ(∅) = 0, then it is 

also finitely subadditive.
Let A ∈ A.  A measure µ on A is said to be continuous from below at A if

{Ai} ⊂ A, A1 ⊆ A2 ⊆ ..., and
→∞i
lim Ai = A

together imply

→∞i
lim µ(Ai) = µ(A),

and µ is said to be continuous from above at A if
{Ai} ⊂ A, A1 ⊇ A2 ⊇ ..., µ(A1) < ∞, and

→∞i
lim Ai = A

together imply

→∞i
lim µ(Ai) = µ(A).

µ is continuous from below (resp., above) on A if and only if it is continuous
from below (resp., above) at every set A ∈ A, and µ is said to be continuous if 
it is continuous both from below and from above (at A, or on A).

Let A1 and A2 be families of subsets of A such that A1 ⊆ A2, and let µ1 and 
µ2 be measures on A1 and A2, respectively. µ2 is said to be an extension of µ1

if µ1(A) = µ2(A) for every A ∈ A1.
For example, let A = (−∞,∞), A1 = { [a,b) | −∞ < a < b < ∞ }, A2 =

family of all finite, disjoint unions of bounded intervals of the form [c,d), and 
a measure µ1 be defined on A1 by

µ1([a,b)) = b − a.
Then µ1 is countably additive and so is a finite measure on A1.  This µ1 can be 
extended to a finite measure µ2 on A2 by defining

µ2([a,b)) = µ1([a,b)) for all [a,b) ∈ A1.
More generally, if f is a finite, nondecreasing, and left-continuous real-valued
function of a real variable, then

µf ([a,b)) := f(b) − f(a) for all [a,b) ∈ A1,
defines a finite measure on A1, and it can be extended to be a finite measure µ2

on A2.

II. FUZZY SET THEORY

In Section I.A, we have defined the characteristic function XA of a set A by 

XA(x) = 
⎩
⎨
⎧

∉
∈

,Axif
,Axif

0

1

which is an indicator of members and nonmembers of the crisp set A.  In the
case that an element has only partial membership of the set, we need to
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generalize this characteristic function to describe the membership grade of this 
element in the set: larger values denote higher degrees of the membership.

To give more motivation for this concept of partial membership, let us
consider the following examples.

Example 1.1. Let S be the set of all human beings, used as the universe
set, and let

Sf = { s ∈ S | s is old }.
Then Sf is a “fuzzy subset” of S because the property “old” is not well defined 
and cannot be precisely measured:  given a person who is 40 year old, it is not 
clear if this person belongs to the set Sf.  Thus, to make the subset Sf well-
defined, we have to quantify the concept “old,” so as to characterize the subset 
Sf in a precise and rigorous way.

For the time being, let us say, we would like to describe the concept “old”
by the curve shown in Figure 1.1(a) using common sense, where the only
people who are considered to be “absolutely old” are those 120 years old or
older, and the only people who are considered to be “absolutely young” are
those newborns.  Meanwhile, all the other people are old as well as young,
depending on their actual ages.  For example, a person 40 years old is
considered to be “old” with “degree 0.5” and at the same time also “young”
with “degree 0.5” according to the measuring curve that we used.  We cannot
exclude this person from the set Sf described above, nor include him
completely.  Thus, the curve that we introduce in Figure 1.1(a) establishes a
mathematical measure for the “oldness” of a human being, and hence can be
used to define the partial membership of any person relative to the subset Sf
described above.  The curve shown in Figure 1.1(a), which is indeed a
generalization of the classical characteristic function XSf (it can be used to
conclude a person who either “is” or “is not” a member of the subset Sf), is
called a membership function associated with the subset Sf.

Of course, one may also use the piecewise linear membership function
shown in Figure 1.1(b) to describe the same concept of oldness for the same
subset Sf, depending on whichever is more meaningful and more convenient
in one’s concern, where both are reasonable and acceptable in common sense.
The reader may suggest many more good candidates for such a membership
function for the subset Sf described above.  There is yet no fixed, unique, and
universal rule or criterion for selecting a membership function for a particular
“fuzzy subset” in general: a correct and good membership function is
determined by the user based on his scientific knowledge, working
experience, and actual need for the particular application in question.  This
selection is more or less subjective, but the situation is just like in the classical 
probability theory and statistics where if one says “we assume that the noise is 
Gaussian and white,” what he uses to start with all the rigorous mathematics is 
a subjective hypothesis that may not be very true, simply because the noise in 
question may not be exactly Gaussian and may not be perfectly white.  Using
the same approach, we can say, “we assume that the membership function that 
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describes the oldness is the one given in Figure 1.1(a),” to start with all the
rigorous mathematics in the rest of the investigation.

The fuzzy set theory is taking the same logical approach as what people
have been doing with the classical set theory: in the classical set theory, as
soon as the two-valued characteristic function has been defined and adopted,
rigorous mathematics follows; in the fuzzy set case, as soon as a multi-valued
characteristic function (the membership function) has been chosen and fixed, a 
rigorous mathematical theory can be fully developed.

Now, we return to the subset Sf introduced above.  Suppose that the
membership function associated with it, say the one shown in Figure 1.1(a),
has been chosen and fixed.  Then, this subset Sf  along with the membership
function used, which we will denote by µSf(s) with s ∈ Sf, is called a fuzzy
subset of the universe set S.  A fuzzy subset thus consists of two components: 
a subset and a membership function associated with it.  This is different from
the classical set theory, where all sets and subsets share the same (and the
unique) membership function: the two-valued characteristic function
mentioned above.

Throughout this book, if no confusion would arise, we will simply call a
fuzzy subset a fuzzy set, keeping in mind that it has to be a subset of some
universe set and has to have a pre-described membership function associated
with it.

To familiarize this new concept, let us now discuss one more example.
Example 1.2. Let S be the (universe) set of all real numbers, and let

Sf = { s ∈ S | s is positive and large }.
This subset, Sf, is not well-defined in the classical set theory because, although 
the statement “s is positive” is precise, the statement “s is large” is vague.
However, if we introduce a membership function that is reasonable and
meaningful for a particular application for the characterization or measure of
the property “large,” say the one shown in Figure 1.2 quantified by the
function

µSf(s) = 
⎩
⎨
⎧

>−
≤

− ,se
,s

s 0if1

0if0

then the fuzzy subset Sf, associated with this membership function µSf(s), is
well defined.

Similarly, a membership function for the subset
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Figure 1.1(a)  An example of Figure 1.1(b)  Another example
membership functions. of membership functions.


